8 September 2022- Canonical, the publisher of Ubuntu, announces today the release of Charmed Kubeflow 1.6, an end-to-end MLOps platform with optimised complex model training capabilities. Charmed Kubeflow is Canonical’s enterprise-ready distribution of Kubeflow, an open-source machine learning toolkit designed for use with Kubernetes.
Charmed Kubeflow 1.6 follows the same release cadence as the Kubeflow upstream project. This latest version follows the Kubeflow roadmap and comes with performance enhancements and more advanced model training capabilities.
Charmed Kubeflow helps data science teams automate tasks and boost productivity, helping companies lower costs. The platform’s components use charms – Kubernetes operators that automate maintenance and security operations. Charms accelerate workload deployment, allowing data scientists to take models to market more efficiently.
According to a 2022 IBM Index AI Report, adoption of AI/ML within enterprises reached 35% last year. The benefits are clear. For instance, banks applying ML to build recommendation earnings have boosted sales by 10%, saved 20% in CAPEX, increased cash collections by 20%, and reduced churn by 20%. Identifying tools that bring automation to data science workflows has become essential to getting a faster return on investment from AI/ML projects.
Besides accelerating deployments, Charmed Kubeflow 1.6 makes data processing more seamless. Kubeflow’s 2022 survey reveals that data processing and transformation are the most challenging and time-consuming activities for enterprises. Moreover, data comes from various sources, each with particular processes and dependencies.
Charmed Kubeflow 1.6 comes with better tracking capabilities. AI/ML models can be measured more effectively; evolution and debugging become simpler. The solution detects data drift and allows models to adapt to it quickly. Charmed Kubeflow 1.6 brings improved tracking for trial logs as well, allowing for efficient debugging in case of data source failure.
Models need up to 15 iterations to become production-ready, and only half of them get that far into the AI/ML journey. Charmed Kubeflow 1.6 supports population-based training (PBT), accelerating model iteration and improving the likelihood that models will reach production readiness. An MPI operator makes training large volumes of data more efficient. PyTorch elastic training enhancements make model training more effective and help ML engineers get started quickly.
Canonical will be hosting a livestream on 8 September 2022 to talk more about Charmed Kubeflow 1.6. This will be a technical deep dive on some of the topics included in upstream Kubeflow’s and Canonical’s roadmap. The livestream will cover:
Google | Outlook | Office 365 | Yahoo | Other calendars
The upcoming webcast will delve deeper into the features discussed in the Beta release’s livestream, which is available on YouTube. Save the event on Facebook or Linkedin to get notifications about Canonical’s future events.
You’ve recently installed VMware Workstation on your Ubuntu system and encountered the frustrating “Could not…
Have you ever found yourself staring at a terminal full of 404 errors while trying…
One particularly frustrating error that many users face when trying to upgrade from Ubuntu 18.04 …
In the world of containerization, time synchronization issues can create unexpected roadblocks when working with…
If you’ve recently upgraded to Ubuntu 23.04 or newer, you might have encountered a frustrating…
Canonical announces the General Availability of Ubuntu for the NVIDIA® Jetson Orin™ for edge AI…